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Abstract. We consider the optimal stopping problem for g(Zn), where Zn, n = 1, 2 . . . is a homogeneous Markov sequence.
An algorithm, called forward improvement iteration, is investigated by which an optimal stopping time can be computed. Using
an iterative step, this algorithm computes a sequence B0 ⊇ B1 ⊇ B2 ⊇ . . . of subsets of the state space such that the first
entrance time into the intersection F of these sets is an optimal stopping time.
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1 Introduction
We recall the general situation for a problem of optimal stopping. Starting with a probability space and a
time set T ⊆ [0,∞], we have a filtration (At)t∈T and an adapted real-valued stochastic process (Xt)t∈T .
A stopping rule is a mapping τ : Ω → T satisfying {τ ≤ t} ∈ At for all t ∈ T , and we let T denote the
set of all stopping rules. We assume that EXτ exists (possibly infinite) for all τ ∈ T . The aim is to find
a stopping rule τ∗ satisfying

EXτ∗ = sup
τ∈T

EXτ

and to compute this supremum, called the value of the stopping problem. There is a wealth of literature
on the theory of optimal stopping and its applications, see e.g. the recent monograph by Peskir and
Shiryaev (2006), current research often triggered by the applicability in option pricing problems of
mathematical finance.

Differing from the well-known backwards induction approach, the following algorithm called for-
ward improvement iteration (FII) was introduced in Irle (1980) as a general theoretical tool and was then
used for finding explicit solutions in best choice problems.

For FII we let T = {0, 1, 2, . . . ,m} for m ≤ ∞ thus including the infinite time case m = ∞. For
any sequence C = (Cn)n∈T of Cn ∈ An with Cm = Ω we define the stopping rule

τn(C)(ω) = inf {k ≥ n : ω ∈ Ck}.

For C we define C∗ by C∗
m = Ω and

C∗
n = {E(Xτn+1(C)|An) ≤ Xn} ∩ Cn, n < m.

FII proceeds in the following way. Let C0 = (Ω)n and by induction Ck = (Ck−1)∗. Define D by
Dn =

⋂
k

Ck
n. It is shown in Irle (1980) that τ0(D) is an optimal stopping rule under the condition,

trivially true for m < ∞, that EXlim σn = lim EXσn for any increasing sequence (σn)n of stopping
rules.

This approach was adapted in Irle (2006) to Markovian stopping problems. Different to the general
case where FII works in the set of sample paths, the adapted algorithm now works in the space set of a
Markov chain which allows for efficient numerical calculations.

We consider T = {0, 1, 2, . . . ,∞} and a homogeneous Markov process (Zn)n<∞ with respect to
the underlying filtration. The measurable state space is denoted by (S,S). Let g : S → R be measurable.
We look at the optimal stopping problem for

Xn = g(Zn), n < ∞, X∞ = lim supXn,
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formally writing g(Z∞) for X∞ in various expressions. We use Pz, Ez for P (·|Z0 = z), E(·|Z0 = z)
and assume that Ez g(Zτ ) exists for all stopping rules τ and all z ∈ S. We are looking for a stopping
rule τ∗ such that for all z ∈ S

Ez g(Zτ∗) = sup
τ

Ez g(Zτ ) = V (z), say,

V referred to as value function. FII works in the following way. For a measurable B ⊆ S set

τn(B) = inf {j ≥ n : Zj ∈ B}

and define
B∗ = {z : g(z) ≥ Ezg(Zτ1(B)} ∩B.

Let B0 = S and by induction Bk = (Bk−1)∗, furthermore

F =
⋂
k

Bk.

Under the condition Ezg(Zlim σn) = lim Ezg(Zσn) for all z and all increasing sequences (σn)n of
stopping rules, τ0(F ) is an optimal stopping rule. The above condition may be omitted in the case of a
finite state space S and then the algorithm terminates after at most |S| steps. In the case of discounting
with 0 < α ≤ 1 we consider the stopping problem for Xn = αng(Zn). For α = 1 this reduces
to Xn = g(Zn), but on the other hand, the discounted case may also be viewed as a non-discounted
stopping problem for the space-time chain (Zn, n). The algorithmic step of going from B to B∗ is
provided by

B∗ = {z : g(Z) ≥ Ezα
τ1(B)g(Zτ1(B))} ∩B.

We refer to Irle (2006) where also various examples with discounting were treated. In these examples,
the algorithmic step of going from B to B∗ was performed by providing numerical values for the quan-
tities Ezα

τ1(B)g(Zτ1(B)) by path wise simulations of the Markov chain. As shown theoretically and
demonstrated by actual computations, FII finds, for finite state space S, the value function and the op-
timal stopping time in a finite number of iterations. In the examples of Irle (2006), this number was
surprisingly low.

The purpose of this note is twofold. Firstly we shall show that the algorithmic step may be described
in terms of a linear equation which allows the use of fast methods of numerical linear algebra and
the handling of very large state spaces. Secondly we shall show how the algorithm may be adapted to
continuous time Markov chains.

2 The algorithmic step as a linear equation

We consider a discounted Markovian stopping problem as described in the introduction with a finite
state space S, g : S → R, 0 < α ≤ 1. We assume g ≥ 0 for α < 1 to rule out that infinite observation is
optimal due to discounting. Let

pzy = P (Z1 = y |Z0 = z), y, z ∈ S.

For shorter notation we write hi(B)(z) = Ez ατi(B)g(Zτi(B)), z ∈ S, i = 0, 1.

Proposition 1 Let B ⊆ S with Pz(τ0 (B) < ∞) = 1 for all z ∈ S. Then h0 (B) is the unique solution
of

h(z) = g(z), z ∈ B, h(z) = α
∑

y

pzy h(y), z ∈ S \B.
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Proof. Obviously h0 (B) fulfills h0 (B)(z) = g (z), z ∈ B, by definition. Furthermore h0 (B)(z) =∑
y

pzy α h0 (B)(y), z ∈ S \ B, as a well-known consequence of the Markov property which is often

denoted as the α-harmonicity of h0 (B) on S \ B. So h0 (B) provides a solution. Using the condition
Pz(τ0 (B) < ∞) = 1, it is immediate from the α-harmonicity that the maximum of h0 (B) is attained
at some point in B, this fact often being referred to as discrete maximum principle.

Uniqueness is an immediate consequence of this principle. Consider two solutions h, h′ and set
f = k− k′. Then f and −f provide solutions corresponding to g(z) = 0, z ∈ B, and by the maximum
principle f ≤ 0, −f ≤ 0, hence h = h′.

Corollary 1 Let B0 = S, Bk = (Bk−1)∗, k = 1, 2, . . . . Then for all k, h0 (Bk) is the unique
solution of

h(z) = g(z), z ∈ Bk, h(z) = α
∑

y

pzy h(y), z ∈ S \Bk.

Furthermore

h1(Bk)(z) = h0(Bk)(z), z ∈ S \Bk, h1(Bk)(z) = α
∑

y

pzy h0(Bk)(y), z ∈ Bk.

Proof. The relation between h0(Bk) and h1(Bk) is obvious. Hence it is enough to show that
Pz(τ0(Bk) < ∞) = 1 for all z. For this define F ∗ = {z : g(z) = V (z)}, where V is the value func-
tion of the discounted stopping problem. It is well-known that τ0(F ∗) is an optimal stopping time and
Pz(τ0(F ∗) < ∞) = 1 for all z, see Shiryayev (1978), Chapter 2, Theorem 4. By induction, Bk ⊇ F ∗

for all k, hence Pz(τ0(Bk) < ∞) = 1 for all z.
This corollary shows that the iterative step may be performed by solving h(z) = g(z), z ∈ B

,h(z) =
∑
y

α pzy h(y), z ∈ S, and then using h(z) = h(z), z ∈ S \ B, h(z) =
∑
y

α pzy h(y), z ∈ B

for the comparison with g(z). Using appropriate packages of numerical linear algebra this may be done
for large state spaces.

3 Continuous time Markov chains and random discounting

We now treat a continuous time Markov chain (Ẑt)t∈[0,∞) with a finite state space S and look at the
discounted optimal stopping problem for

X̂t = αtg(Ẑt), t ∈ [0,∞), X̂∞ = lim sup X̂t,

assuming g ≥ 0 for α < 1.
It is well-known that an optimal stopping time exists and is of the form

τ = inf {t ∈ [0,∞) : Ẑt ∈ B}

for some B ⊆ S, see Shiryayev (1978). So we only have to look at first entrance times in this stopping
problem. Denote the jump times of the chain by T0 = 0 < T1 < T2 < . . . and the embedded chain by
Zn = ẐTn with transition probabilities pzy, z, y ∈ S. Given Z0 = z0, . . . , Zn = zn, the waiting times
Ti − Ti−1, i = 1, . . . , n, are independent exponentially distributed with parameters λ(z1), . . . , λ(zn).
The transition probabilities pzy and the parameters are computed from the Q-matrix of the chain.



4 Irle

Now look at any a.s. finite first entrance time τ̂ = inf {t : Ẑt ∈ B}. Then for Dn = (Bc)n−1 ×B

EX̂τ =
∑
n

E
(
1{τ=Tn} αTn g

(
ẐTn

))
=

∑
n

E

(
1{(Z0,...,Zn)∈Dn}

n∏
i=1

αTn−Tn−1 g (Zn)
)

=
∑
n

E

(
1{(Z0,...,Zn)∈Dn} g(Zn)E

(
n∏

i=1
αTn−Tn−1 |Z1, . . . , Zn

))
=

∑
n

E

(
1{(Z0,...,Zn)∈Dn} g(Zn)

n−1∏
i=0

α(Zi)
)

= E

(
g(Zτ )

n−1∏
i=0

α(Zi)
)

,

where τ = inf{n : Zn ∈ B} and α(z) = λ(z)
λ(z)−log α is the moment generating function of an exponential

distribution with parameter λ(z). So the continuous time problem is equivalent to a discrete time problem

with random discounting where Xn = g(Zn)
n−1∏
i=0

α(Zi). The algorithmic step is done in the following

way. For B ⊆ S set

B∗ = {z : g(z) ≥ Ez(g(Zτ1(B))
τ1(B)−1∏

i=1

α(Zi))}.

Again let B0 = S, Bk = (Bk−1)∗ and F =
⋂
k

Bk. Under the condition Ez Xlim σn = lim Ez Xσn for

all z and all increasing sequences (σn)n of stopping rules, τ0(F ) again is an optimal stopping time. We
give a proof of this result in the Appendix.

Writing as before

hi(B)(z) = Ez (g(Zτi(B))
τi(B)−1∏

i=0

α(Zi))

it follows as in Section 2 that h0(B) is the unique solution of

h(z) = g(z), z ∈ B, h(z) = α(z)
∑

y

pzy k(y), z ∈ S \B.

Furthermore

h1(B)(z) = h0(B)(z), z ∈ S \B, h1(B)(z) = α(z)
∑

y

pzy h0(B)(y), z ∈ B.

So we may use again numerical linear algebra for FII. We now state and prove the validity of FII in the
case of random discounting.

Theorem 1 Consider a Markovian stopping problem with random discounting where g : S → R, α :
S → [0, 1] are measurable functions. Let

Xn = g(Zn)
n−1∏
i=0

α(Zi), n = 0, 1, . . . , X∞ = lim supXn.

Assume that EzXτ exists for all stopping rules τ, z ∈ S and Ez lim
n

Xσn = lim
n

EzXσn for all z ∈ S

and all increasing sequences (σn) of stopping rules.
Define Bk, k = 0, 1, 2, . . . and F =

⋂
k

Bk as in Section 3. Then for all z ∈ S

(i) EzXτ(B0) ≤ EzXτ(B1) ≤ . . . ↑ EzXτ(F ),
(ii) EzXτ(F ) = V (z), i.e. τ(F ) is optimal.
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Proof. The proof uses the basic ideas of the proof of Theorem 1 in Irle (1980) adapted to the Markovian
setting with discounting.
(a) Let B ⊆ S, B∗ as above. For σ ∈ T (B) set

σ∗ = inf{n ≥ σ : Zn ∈ B∗}

with T (B) = {τ : Zτ ∈ B on {τ < ∞}. We shall show EzXσ∗ ≥ EzXσ from which (i) immediately
follows. Let

σ̂ =
∑
n<∞

τn+1 (B) 1{σ=n,Zn /∈B∗} + σ1{Zσ∈B∗} +∞1{σ=∞}.

Obviously σ̂ ∈ T (B). For any n < ∞, with an independent copy (Zn
′) of (Zn)

∫
{σ=n,Zn /∈B∗}

XσdPz =
∫

{σ=n,Zn /∈B∗}
g(Zn)

n−1∏
i=0

α(Zi)dPz

≤
∫

{σ=n,Zn /∈B∗}

[
EZng

(
Z ′

τ ′1(B)

) τ ′1(B)−1∏
i=0

α(Z ′
i)

]
n−1∏
i=0

α(Zi)dPz

=
∫

{σ=n,Zn /∈B∗}
E

(
g(Zτn+1(B)

) τn+1(B)−1∏
i=n

α(Zi)|An)
n−1∏
i=0

α(Zi)dPz

=
∫

{σ=n,Zn /∈B∗}
g(Zτn+1(B))

τn+1(B)−1∏
i=0

α(Zi)dPz

=
∫

{σ=n,Zn /∈B∗}
Xτn+1(B)dPz.

This shows EzXbσ ≥ EzXσ. Next let

σ0 = σ and by induction σk = σ̂k−1,

so that EzXσ ≤ EzXσk
≤ EzXσk+1

≤ . . . for all k. We have σ ≤ σ1 ≤ σ2 ≤ · · · ≤ σ∗.
Assume that supσk(ω) < σ∗(ω) for some ω. Then σk(ω) = σk+1(ω) < ∞, for some k, hence

Zσk
(ω) ∈ B∗ and σk+1(ω) = σ∗(ω). This contradiction implies σ∗ = lim

k
σk, so that by assumption

EzXσ∗ = lim EzXσk
≥ EzXσ.

(b) We shall now show that for any stopping time σ there exists τ ∈ T (F ) such that EzXτ ≥ EzXσ.
Define

σk = inf{n ≥ σ : Zn ∈ Bk}, τ = inf{n ≥ σ : Zn ∈ F}.

Then σ0 = σ ≤ σ1 ≤ σ2 ≤ · · · ≤ τ, σk+1 = (σk)∗. It follows from (a) that

EzXσ ≤ EzXσk ≤ EzXσk+1 for all k.

Since F =
⋂
k

Bk, we obtain lim σk = τ, hence by assumption

EzXσ ≤ lim EzXσk = EzXτ .

(c) Let ρ, τ ∈ T (F ) such that ρ ≤ τ . We shall show EzXρ ≥ EzXτ . Let

ρk = ρ1{ρ=τ} +
∑
n<∞

τn+1(Bk)1{ρ=n<τ}, ρ∗ = ρ1{ρ=τ} +
∑
n<∞

τn+1(F )1{ρ=n<τ}.
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Then ρ ≤ ρk ≤ ρk+1 ≤ ρ∗ ≤ τ, ρ∗ = lim ρk. Since ρ ∈ T (F ) we have for any k

{ρ = n < τ} ⊆ {g(Zn) ≥ EZng(Z ′
τ ′1(Bk))

τ ′1(Bk)−1∏
i=0

α(Z ′
i)},

implying

∫
{ρ=n<τ}

Xρ dPz =
∫

{ρ=n<z}
g(Zn)

n−1∏
i=1

α(Zi) dPz

≥
∫

{ρ=n<τ}
[EZn g(Z ′

τ ′1(Bk)
)

τ ′1(Bk)−1∏
i=0

α(Z ′
i)]

n−1∏
i=0

α(Zi) dPz

=
∫

{ρ=n<τ}
g(Zτn+1(Bk))

τn+1(Bk)−1∏
i=0

α(Zi) dPz =
∫

{ρ=n<τ}
ρk dPz,

hence EzXρ ≥ EzXρk
. Letting k →∞ we obtain EzXρ∗ ≤ EzXρ.

Define ρ0 = ρ, and ρk = (ρk−1)∗ for k ≥ 1. Then obviously ρ ≤ ρk ≤ ρk+1, ρk ∈ T (F ), and
lim ρk = τ . It follows

EzXρ ≥ lim EzXρk = EzXτ .

(d) Let σ be any stopping time. Then by (b) there exists τ ∈ T (F ) such that EzXσ ≤ EzXτ . By
definition τ0(F ) ≤ τ , hence by (c)

EzXτ0(F ) ≥ EzXτ ≥ EzXσ.
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